素因数分解をするのではなく、素数の積を生成するのと同じ方法で約数の組を作っていきます。最も素直に書いてみました。
しかし、やっぱり遅いですね。
from itertools import * from math import sqrt import time def sieve(max_n): L = max_n / 1 a = [ True ] * L for p in takewhile(lambda n: n * n < L, (n for n in xrange(2, L) if a[n])): for k in xrange(p * 2, L, p): a[k] = False primes = [ n for n in xrange(2, L) if a[n] ] for offs in xrange(L, max_n + 1, L): a = [ True ] * L for p in takewhile(lambda n: n * n < offs + L, primes): for m in xrange((offs + p - 1) / p * p, offs + L, p): a[m-offs] = False primes.extend(k + offs for k in xrange(L) if a[k] and k + offs <= max_n) return primes def prime_pow_divisors(p, e): if p % 4 == 3: return (p ** e1 for e1 in xrange(e + 1)) elif p % 4 == 1: z1 = fac_g[p] z2 = z1.conjugate() return (z1 ** e1 * z2 ** e2 for e1 in xrange(e + 1) for e2 in xrange(e + 1)) else: return ((1 + 1j) ** e1 for e1 in xrange(e * 2 + 1)) def mul_divs(divs1, divs2): return [ z1 * z2 for z1 in divs1 for z2 in divs2 ] def gen_divisors(n, k0 = 0): yield (1,) if k0 < len(primes) and n >= primes[k0]: g_primes = takewhile(lambda p: p <= n, islice(primes, k0, None)) for k, p in enumerate(g_primes, k0): for e in takewhile(lambda e: p ** e <= n, count(1)): divs1 = list(prime_pow_divisors(p, e)) for divs2 in gen_divisors(n / p ** e, k + 1): yield mul_divs(divs1, divs2) def sum_divisors(divs): def s(z): if z.imag == 0: return int(abs(z.real)) elif z.real == 0: return int(abs(z.imag)) else: return abs(int(z.real)) + abs(int(z.imag)) return sum(s(z) for z in divs) def fac_gauss(N): M = int(sqrt(N)) fac_g = [ 0 ] * (N + 1) for a in xrange(2, M + 1): for b in xrange(1, a): n = a * a + b * b if n <= N: fac_g[n] = a + b * 1j return fac_g t = time.clock() N = 10 ** 5 primes = sieve(N) fac_g = fac_gauss(N) print sum(imap(sum_divisors, gen_divisors(N))) print time.clock() - t