https://atcoder.jp/contests/math-and-algorithm/tasks/math_and_algorithm_ae
直線BC上の点はと表されるので、この点PとAを結んだ直線とBCが直交するなら、
なら、点Pは線分BC上となり、Aから最短の点に、そうでなければBかCが最短の点になります。
// Distance #![allow(non_snake_case)] use std::ops::{Add, Sub}; //////////////////// library //////////////////// fn read<T: std::str::FromStr>() -> T { let mut line = String::new(); std::io::stdin().read_line(&mut line).ok(); line.trim().parse().ok().unwrap() } fn read_vec<T: std::str::FromStr>() -> Vec<T> { read::<String>().split_whitespace() .map(|e| e.parse().ok().unwrap()).collect() } //////////////////// Point //////////////////// #[derive(Clone, Copy)] #[derive(Debug)] struct Point { x: f64, y: f64, } impl Add for Point { type Output = Self; fn add(self, other: Self) -> Self { Self { x: self.x + other.x, y: self.y + other.y } } } impl Sub for Point { type Output = Self; fn sub(self, other: Self) -> Self { Self { x: self.x - other.x, y: self.y - other.y } } } impl Point { fn read() -> Point { let v = read_vec(); Point { x: v[0], y: v[1] } } fn inner_product(v: &Point, w: &Point) -> f64 { v.x * w.x + v.y * w.y } fn mul(&self, a: f64) -> Point { Point { x: self.x * a, y: self.y * a } } fn mag(&self) -> f64 { Point::inner_product(self, self).sqrt() } } //////////////////// process //////////////////// fn read_input() -> (Point, Point, Point) { let A = Point::read(); let B = Point::read(); let C = Point::read(); (A, B, C) } fn f(A: Point, B: Point, C: Point) -> f64 { // (B + t(C - B) - A) * (C - B) = 0 // t(C - B) * (C - B) = (A - B) * (C - B) let v1 = A - B; let v2 = C - B; let t = Point::inner_product(&v1, &v2) / Point::inner_product(&v2, &v2); let pt = if t < 0.0 { B } else if t < 1.0 { B + (C - B).mul(t) } else { C }; (pt - A).mag() } fn main() { let (A, B, C) = read_input(); println!("{}", f(A, B, C)) }