https://atcoder.jp/contests/abc412/tasks/abc412_f
外にある靴下も合わせてAにして降順にソートします。今外にある靴下がで
を取り出したとき、
なら終わり、
なら
をそのままに、
なら
をそのままにすればよいので、期待値
は、
として、
となります。これは少し工夫すれば解けます。
ただ、剰余を計算するコードを書くのが気を遣わないといけないくていつも辛いので、ふつうに計算できる構造体を作ります。ただし、倍くらい時間がかかっています。
// Socks 4 #![allow(non_snake_case)] //////////////////// library //////////////////// fn read<T: std::str::FromStr>() -> T { let mut line = String::new(); std::io::stdin().read_line(&mut line).ok(); line.trim().parse().ok().unwrap() } fn read_vec<T: std::str::FromStr>() -> Vec<T> { read::<String>().split_whitespace() .map(|e| e.parse().ok().unwrap()).collect() } // ax = by + 1 (a, b > 0) fn linear_diophantine(a: i64, b: i64) -> Option<(i64, i64)> { if a == 1 { return Some((1, 0)) } let q = b / a; let r = b % a; if r == 0 { return None } let (x1, y1) = linear_diophantine(r, a)?; Some((-q * x1 - y1, -x1)) } fn inverse<const D: i64>(a: i64) -> i64 { let (x, _y) = linear_diophantine(a, D).unwrap(); x.rem_euclid(D) } //////////////////// ModInt //////////////////// use std::cmp::Ordering; use std::ops::{Add, AddAssign, Sub, SubAssign, Mul, MulAssign, Div, DivAssign, Neg}; #[derive(Copy, Clone)] struct ModInt<const D: i64>(i64); impl<const D: i64> From<i64> for ModInt<D> { fn from(x: i64) -> Self { Self(x.rem_euclid(D)) } } impl<const D: i64> PartialEq for ModInt<D> { fn eq(&self, other: &Self) -> bool { self.0 == other.0 } } impl<const D: i64> Eq for ModInt<D> {} impl<const D: i64> PartialOrd for ModInt<D> { fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(self.cmp(other)) } } impl<const D: i64> Ord for ModInt<D> { fn cmp(&self, other: &Self) -> Ordering { self.0.cmp(&other.0) } } impl<const D: i64> Add for ModInt<D> { type Output = Self; fn add(self, other: Self) -> Self { Self((self.0 + other.0) % D) } } impl<const D: i64> Add<i64> for ModInt<D> { type Output = Self; fn add(self, other: i64) -> Self { Self((self.0 + other) % D) } } impl<const D: i64> Add<ModInt<D>> for i64 { type Output = ModInt<D>; fn add(self, other: ModInt<D>) -> ModInt<D> { ModInt::<D>((self + other.0).rem_euclid(D)) } } impl<const D: i64> AddAssign for ModInt<D> { fn add_assign(&mut self, other: ModInt<D>) { self.0 = (self.0 + other.0).rem_euclid(D) } } impl<const D: i64> AddAssign<i64> for ModInt<D> { fn add_assign(&mut self, other: i64) { self.0 = (self.0 + other).rem_euclid(D) } } impl<const D: i64> Sub for ModInt<D> { type Output = Self; fn sub(self, other: Self) -> Self { Self((self.0 - other.0).rem_euclid(D)) } } impl<const D: i64> Sub<i64> for ModInt<D> { type Output = Self; fn sub(self, other: i64) -> Self { Self((self.0 - other).rem_euclid(D)) } } impl<const D: i64> Sub<ModInt<D>> for i64 { type Output = ModInt<D>; fn sub(self, other: ModInt<D>) -> ModInt<D> { ModInt::<D>((self - other.0).rem_euclid(D)) } } impl<const D: i64> SubAssign for ModInt<D> { fn sub_assign(&mut self, other: Self) { self.0 = (self.0 - other.0).rem_euclid(D) } } impl<const D: i64> SubAssign<i64> for ModInt<D> { fn sub_assign(&mut self, other: i64) { self.0 = (self.0 - other).rem_euclid(D) } } impl<const D: i64> Mul for ModInt<D> { type Output = Self; fn mul(self, other: Self) -> Self { Self(self.0 * other.0 % D) } } impl<const D: i64> Mul<i64> for ModInt<D> { type Output = Self; fn mul(self, other: i64) -> Self { Self(self.0 * other % D) } } impl<const D: i64> Mul<ModInt<D>> for i64 { type Output = ModInt<D>; fn mul(self, other: ModInt<D>) -> ModInt<D> { ModInt::<D>(self * other.0 % D) } } impl<const D: i64> MulAssign for ModInt<D> { fn mul_assign(&mut self, other: Self) { self.0 = self.0 * other.0 % D } } impl<const D: i64> MulAssign<i64> for ModInt<D> { fn mul_assign(&mut self, other: i64) { self.0 = self.0 * other % D } } impl<const D: i64> Div for ModInt<D> { type Output = Self; fn div(self, other: Self) -> Self { Self(self.0 * inverse::<D>(other.0) % D) } } impl<const D: i64> Div<i64> for ModInt<D> { type Output = Self; fn div(self, other: i64) -> Self { Self(self.0 * inverse::<D>(other) % D) } } impl<const D: i64> Div<ModInt<D>> for i64 { type Output = ModInt<D>; fn div(self, other: ModInt<D>) -> ModInt<D> { ModInt::<D>(self * inverse::<D>(other.0) % D) } } impl<const D: i64> DivAssign for ModInt<D> { fn div_assign(&mut self, other: Self) { self.0 = self.0 * inverse::<D>(other.0) % D } } impl<const D: i64> DivAssign<i64> for ModInt<D> { fn div_assign(&mut self, other: i64) { self.0 = self.0 * inverse::<D>(other) % D } } impl<const D: i64> Neg for ModInt<D> { type Output = Self; fn neg(self) -> Self::Output { Self(if self.0 == 0 { 0 } else { D - self.0 }) } } use std::iter::Sum; impl<const D: i64> Sum for ModInt<D> { fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { iter.fold(Self::from(0), |acc, x| acc + x) } } //////////////////// process //////////////////// const D: i64 = 998244353; type IntD = ModInt::<D>; fn read_input() -> (usize, Vec<IntD>) { let v: Vec<usize> = read_vec(); let C = v[1] - 1; let A: Vec<i64> = read_vec(); let B: Vec<IntD> = A.into_iter().map(IntD::from).collect(); (C, B) } fn F(C: usize, mut A: Vec<IntD>) -> i64 { A[C] += 1; let mut v: Vec<(IntD, usize)> = A.iter().cloned().zip(0..).collect(); v.sort_by(|a, b| b.cmp(&a)); let first = v.iter().enumerate().filter(|&(_, t)| t.1 == C). map(|(i, _)| i).next().unwrap(); A.sort_by(|a, b| b.cmp(&a)); let S = A.iter().cloned().sum::<IntD>() - 1; let mut B = IntD::from(0); let mut C = 1 - (A[0] - 1) / S; for i in 0.. { let E = (1 + B) / (1 - C); if i == first { return E.0 } B += A[i] * E / S; C -= A[i+1] / S } 0 } fn main() { let (C, A) = read_input(); println!("{}", F(C, A)) }