https://atcoder.jp/contests/math-and-algorithm/tasks/math_and_algorithm_bi
これも数え方の問題ですね。例の20や22が頂点でいくつカウントされるか考えます。頂点までのパスの数なので、パスカルの三角形と同じになります。
// Pyramid #![allow(non_snake_case)] //////////////////// constants //////////////////// const D: i64 = 1000000007; //////////////////// library //////////////////// fn read<T: std::str::FromStr>() -> T { let mut line = String::new(); std::io::stdin().read_line(&mut line).ok(); line.trim().parse().ok().unwrap() } fn read_vec<T: std::str::FromStr>() -> Vec<T> { read::<String>().split_whitespace() .map(|e| e.parse().ok().unwrap()).collect() } // ax = by + 1 (a, b > 0) fn linear_diophantine(a: i64, b: i64) -> Option<(i64, i64)> { if a == 1 { return Some((1, 0)) } let q = b / a; let r = b % a; if r == 0 { return None } let (x1, y1) = linear_diophantine(r, a)?; Some((-q * x1 - y1, -x1)) } fn inverse(a: i64, d: i64) -> i64 { let (x, _y) = linear_diophantine(a, d).unwrap(); if x >= 0 { x % d } else { x % d + d } } //////////////////// process //////////////////// fn read_input() -> Vec<i64> { let _N: usize = read(); let A = read_vec(); A } fn f(A: Vec<i64>) -> i64 { let N = A.len(); let mut s: i64 = A[0]; let mut c: i64 = 1; for i in 1..N { c = c * ((N - i) as i64) % D * inverse(i as i64, D) % D; s = (s + c * A[i]) % D } s } fn main() { let A = read_input(); println!("{}", f(A)) }