5の約数は、1, 2 + i, 2 - i, 5ですが、整数は足して考えてもよいです。ai + bii(ai ≥ bi ≥ 0)に対して1と5を掛けると、ai + bii, 5ai + 5biiとなり、90度回転したbi - aii, 5bi - 5aiiと実部の和を取ると、6ai + 6biとなり、最初から6としたときと同じになります。だから、約数は6, 2 + i, 2 - iと考えればよいです。
また、2 + iと10 + 5iのように実数比になっていても足し合わせて考えることができます。
from itertools import * from math import sqrt def sieve(max_n): L = max_n / 1 a = [ True ] * L for p in takewhile(lambda n: n * n < L, (n for n in xrange(2, L) if a[n])): for k in xrange(p * 2, L, p): a[k] = False primes = [ n for n in xrange(2, L) if a[n] ] for offs in xrange(L, max_n + 1, L): a = [ True ] * L for p in takewhile(lambda n: n * n < offs + L, primes): for m in xrange((offs + p - 1) / p * p, offs + L, p): a[m-offs] = False primes.extend(k + offs for k in xrange(L) if a[k] and k + offs <= max_n) return primes def gen_pow(n, e): m = 1 yield 1 for k in xrange(e): m *= n yield m def prime_pow_divisors(p, e): if p % 4 == 3: return ((p ** (e + 1) - 1) / (p - 1),) elif p % 4 == 1: z = fac_g[p] a = ((p ** (e + 1) - 1) / (p - 1),) for e1 in xrange(1, e + 1): w = z ** e1 * (p ** (e - e1 + 1) - 1) / (p - 1) a = a + (w, w.conjugate()) return a else: return (2 ** (e + 1) - 1, (2 ** e - 1) * (1 + 1j)) def mul_divs(divs1, divs2): return [ z1 * z2 for z1 in divs1 for z2 in divs2 ] def gen_divisors1(n, k0 = 0): yield (1, (1,)) if k0 < len(primes) and n >= primes[k0]: g_primes = takewhile(lambda p: p <= n, islice(primes, k0, None)) for k, p in ((k, p) for k, p in enumerate(g_primes, k0) if p % 4 != 3): for e in takewhile(lambda e: p ** e <= n, count(1)): divs1 = prime_pow_divisors(p, e) for m, divs2 in gen_divisors1(n / p ** e, k + 1): yield p ** e * m, mul_divs(divs1, divs2) def sum_divisors((n, divs)): def s(z): if z.imag == 0: return int(abs(z.real)) elif z.real == 0: return int(abs(z.imag)) else: return abs(int(z.real)) + abs(int(z.imag)) return sum(s(z) for z in divs) * sum_divisors3(N / n) def sum_divisors3(n, k0 = 0): s = 1 if k0 < len(primes) and n >= primes[k0]: g_primes = takewhile(lambda p: p <= n, islice(primes, k0, None)) for k, p in ((k, p) for k, p in enumerate(g_primes, k0) if p % 4 == 3): for e in takewhile(lambda e: p ** e <= n, count(1)): m = p ** e s += (m * p - 1) / (p - 1) * sum_divisors3(n / m, k + 1) return s def fac_gauss(N): M = int(sqrt(N)) fac_g = [ 0 ] * (N + 1) for a in xrange(2, M + 1): for b in xrange(1, a): n = a * a + b * b if n <= N: fac_g[n] = a + b * 1j return fac_g N = 10 ** 5 primes = sieve(N) fac_g = fac_gauss(N) print sum(imap(sum_divisors, gen_divisors1(N)))